论文降重

MEMS微镜测控平台及非线性补偿[范文]

时间:2017-12-23 11:03:44 编辑:知网查重入口 www.cnkiid.cn

 摘要​

微机电系统(Micro-Elcetro-Mechanical-Systems, MEMS)是指采用纳米加工技术可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、接口电路、通讯等于一体的微型系统或微型器件。其中MEMS微镜是此类器件中的典型代表。

MEMS微镜测控平台及非线性补偿

MEMS微镜测控平台及非线性补偿

MEMS微镜具有体积小、重量轻、耗能低、灵敏度高等优点,所以被广泛应用在食品检测,光学医疗检测等无损检测领域。但是由于微镜是一个高度的欠阻尼系统,应用到这些领域中需要达到一定的优质性能,因此本文了搭建一个MEMS微镜的测控平台。通过采集平台的数据,来分析微镜,并补偿微镜结构中驱动部分的迟滞和镜子本身高度欠阻尼的缺陷。本文主要做了以下几项工作:

(1)设计并搭建微镜测控平台:为了提高微镜在应用上的扫描精度,需要深入研究微镜的系统特性,并设计基于模型的控制算法。为此,设计了MEMS驱动电路、信号放大电路等模块,搭建了MEMS微镜测控平台,为MEMS微镜的系统辨识、控制提供了基础。

(2)微镜系统的建模方法:在微镜的领域中,基本还没有在辨识建模方面有过相应的研究。而本文中使用了Hammerstein模型和线性模型建模方法来拟合微镜的实际系统,希望可以以此来改善微镜迟滞和高度欠阻尼方面的缺陷。

(3)微镜系统的控制方法:在建立逆模型的基础上,实现了PID串联线性逆模型控制,基于线性模型的内模PID控制以及PID串联PI逆模型控制和PID串联Hammerstein逆模型控制等方法,有效改善了微镜系统迟滞和高度欠阻尼方面的缺陷。 

本课题受国家自然科学基金项目(项目号:61671303,61571302和61371145)和上海市科委科研项目(项目号:14140711200)资助。

 

Micro-Electro-Mechanical-Systems(MEMS) is a kind of micro systems or micro components which can be produced on a large scale with nano-processing technology and consist of microstructure, micro sensor, micro actuator and signal-processing and control circuits, interface circuits, communication modules, etc. MEMS micromirror is a typical representative of those components.

MEMS micromirror is widely used in the area of non-destructive detection such as food detection, optical medical detection with the advantages of small size, low weight, low energy consumption, high sensitivity and so on. However, MEMS micromirror is a highly underdamped system, and it must be with good performance when applied in those areas. In the thesis, a testing and control platform of micromirror is built; the data of the platform are acquired to analyze the micromirror system and compensate its performance. The following researches are done in the article:

(1) The designing and building of the platform of micromirror: In order to improve the scanning accuracy of micromirror in the application, the system characteristic of micromirror needs deep-going study and the control algorithm based on the model should be designed. Thus, the modules such as MEMS driving circuit and signal amplification circuit are designed and a testing and control platform of micromirror is built, which lay a foundation for system identification and control of MEMS micromirror.

(2)The modeling method of micromirror system: In the area of micromirror, there haven’t been any research on system identification modeling. In the thesis, Hammerstein model and linear modeling method are used to fit the real system of micromirror to improve the disadvantages of its hysteresis and highly under-damped characteristic.

(3) The control method of micromirror system: Based on the inverse model, the PID-cascade linear inverse model control is realized. The internal model-PID control based on linear model, PID-cascade PI inverse model control and PID-cascade Hammerstein inverse model control effectively improve the disadvantages of hysteresis and highly under-damped characteristic of the micromirror.

Keywords: micromirror; PID; Hammerstein model; PI model;System identification; Internal Model Control

This research is partially supported by Research Projects of Science and Technology Commission of Shanghai(Grant Nos.: 14140711200) and the National Science Foundation of China (NSFC Grant Nos.: 61671303, 61571302 and 61371145).